
Abstract. This is a personal perspective on the paper of
Jiri CÏ õÂ zÆ ek that initiated the use of coupled-cluster (CC)
theory in chemistry. As CC theory is now the method of
choice for most highly accurate quantum chemical
studies, its in¯uence is profound.
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Looking at the modern state of the treatment of the
correlation problem in the electronic structure of
molecules, few papers can be said to be more instru-
mental to that e�ort than the paper of Jiri CÏ õÂ zÏ ek in 1966,
that ®rst detailed the equations of the coupled-cluster
(CC) approach. This too-brief, 11-page paper summa-
rizes his dissertation work of 2 years earlier [1]. As the
title says his use of ``quantum-®eld theoretical methods''
was intimidating to most quantum chemists of the time,
which no doubt kept many from appreciating the
signi®cance of this work in 1966.

At that time, the best-known method for electron
correlation in molecules was undoubtedly con®guration
interaction (CI). This tool had developed in the hands of
Slater and Condon, with early applications by Boys,
Parr, Matsen, and their coworkers around 1950 (see Ref.
[2] for an excellent review). Somewhat less known to the
quantum chemistry community was the parallel devel-
opment in the mid 1950s of the correlation problem
in physics that originated with Brueckner [3] and
Goldstone [4], termed many-body perturbation theory
(MBPT) because it was applicable to many-electron
systems. This feature, that we now call size-extensivity
[5], was not shared by CI, but was a necessity for the
physics applications to nuclear matter and the electron
gas. Important questions at this time included the cor-
relation treatment of the high- and low-density electron

gas, and in the ®rst case it was possible to make an
in®nite sum of ``ladder'' diagrams to get a good answer,
and in the other case, an in®nite sum of ``ring'' diagrams;
however, atoms and molecules have regions of both high
and low electron density. Initial atomic applications of
MBPT were made by Kelly [6]. Sinanoglu [7] and Nesbet
[8] took some of the cluster ideas into the quantum
chemistry community, though retaining many of the
trappings of the more familiar CI world. Hence, the ®rst
complete solution of these diverse problems was o�ered
by CC theory. In one convenient, conceptual, and
computational framework it consolidates the in®nite
sum of ring and ladder diagrams and, indeed, all other
kinds of diagrams, to o�er a uni®ed, size-extensive
treatment of electron correlation.

The concept of an exponential wavefunction of a
cluster operator

T � T1 � T2 � T3 � T4 � � � �
W � exp�T �U0

for the correlation problem, where U0 represents the
wavefunction for an independent particle model such as
Hartree±Fock and Tn the ``connected'' cluster operators
for n electrons, is implicit in the linked-diagram expan-
sion of Brueckner and Goldstone, and was, perhaps,
stated most explicitly in a paper of Hubbard [9] in 1957.
Hubbard gives the formula

W � exp S0L�0�
� 	

W0 :

The CC wavefunction had been considered by Coester
and Kummel [10] as the ``exponential S'' ansatz at about
the same time in the nuclear physics literature; however,
none of these authors took the next step to develop
explicit equations for the cluster amplitudes ftabc...

ijk... g,
which appear in the cluster operators,

Tn � 1

n!
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and are the object of a CC calculation. To do this in a
very general way required more powerful tools than the
familiar rules based upon the Slater±Condon rules for
matrix elements of the Hamiltonian between excited
determinants; hence, the use of ``diagrammatic meth-
ods''. CÏ õÂ zÏ ek took his approach from a Russian language
technical note of Tolmachev on ``The ®eld form of the
perturbation theory applied to many-electron problems
of atoms and molecules'' written in 1963. In two pages,
CÏ õÂ zÏ ek develops all the second-quantized tools he re-
quires, de®ning the operators, their anticommutation
relations, their normal ordered form, and their contrac-
tions or ``pairings''. He emphasizes the e�ective use of
normal ordered operators and their contractions. This,
in my opinion, still o�ers the most economical develop-
ment of even algebraic second-quantized operator
derivations, and is even more e�ective once we employ
diagrams.

In the next six pages he introduces in rapid order H,
T, S, R, and M skeleton diagrams, and all but the most
avid reader is likely to be lost! In addition there is a need
for ``weight factors'', equivalent line de®nitions, equiv-
alent skeleton de®nitions which depend upon an appre-
ciation of ``topological deformations'', open lines, closed
lines, sign factors, etc. This leads to statements such as
``In this special case, the M skeletons consist of a set of T
skeletons (the empty set being included) each of which
has two open paths. The possible R skeletons, having
none or two open paths, which can be obtained from
these M skeletons...'' Whew! This is nothing less than a
course on diagrams in six pages!

Using all the above, CÏ õÂ zÏ ek presents the explicit, spin
orbital and spin-adapted CC doubles equations (CCD)
i.e., T � T2 (then called coupled-pair many-electron
theory) in terms of one- and two-electron integrals over
an orthogonal basis set. Assisted by Joe Paldus with
some computations, he also reports some CCD results
for N2, which though limited to only pu to pg excitations,
uses ab initio integrals in an Slater-type-orbital basis. He
also does the full CI calculation to assess convergence, a
tool widely used in CÏ õÂ zÏ ek's and Paldus' work and by
most of us, today. He also reports results for the mini-
mum-basis p-electron approximation to benzene.

Though used in some semiempirical applications by
Paldus and CÏ õÂ zÏ ek [11] and one ab initio study [12] (see
later), the CCD equations were not implemented into
general purpose programs until 1978 by me and Purvis
[5] and Pople et al. [13]. This general implementation
included allowing for the open-shell case subject to
an unrestricted Hartree±Fock reference function.

In another landmark paper, Paldus, CÏ õÂ zÏ ek and Sha-
vitt [12] partly considered e�ects of other cluster oper-
ators, T1 and T3, in a minimum-basis ab initio study of
BH3. In 1982 we presented the detailed equations and
implementation of CCSD for open and closed shells [14].
Two years later, we considered the initial e�ects of
connected triple excitations (CCSDT-1) [15] and their
noniterative inclusion CCSD[T] [16]. Today full CCSDT
[17] and full CCSDTQ [18] are known and applied, and
their noniterative forms such as CCSDT(Qf ) [19], and
the ubiquitous CCSD(T) [20], which is a noniterative
version of CCSDT-1 and a slight modi®cation of

CCSD[T] [21]; that adds the initial perturbative e�ects of
triples to singles along with those due to doubles that
de®ne [T].1

For ground states (or the lowest state of a given
symmetry) single-reference CC methods occupy the
critical role in the now well-known paradigm of
improving quantum chemical calculations: SCF <
MBPT(2) � MBPT(3) < CCD < CCSD � MBPT(4) <
CCSD(T) < CCSDT < CCSDT(Q) < CCSDTQ < full
CI. Combined with systematically converging basis sets
such as the cc-pVNZ basis [22], this sequence enables
quantum chemistry to make reliable predictions about
the structure, spectra, and most transition states for
molecules with an ease of application that only requires
a choice of basis set, level of correlation, and multiplic-
ity, albeit with substantial computer time for CCSD(T)
and beyond. These applications depend upon further
extensions in the CC treatment of analytical gradients
[23] and even Hessians [24]. The former provides ®rst-
order properties as a consequence of the ``relaxed'' and
``response'' one- and two-particle density matrices [21].
To quote Dunning, who comes from the multireference
CI background, ``...of the methods of widespread use
today, the CCSD(T) method is the only one that pro-
vides a consistently accurate description of molecular
interactions for all interaction scales investigated, from
more than 200 kcal/mol to 0.02 kcal/mol'' [25].

Now, depending only on a choice of basis and level of
correlation just as for ground states, there are general-
izations for the treatment of excited, ionized and elec-
tron-attached states [21, 26] and analytical gradients for
such states [27]; for the treatment of second- and higher-
order properties, static [28] and frequency-dependent
[29]; for relativistic problems [30]; for explicit r12 CC
theory [31]; and for various multireference generaliza-
tions of CC theory [32]. In brief, CC theory has now
assumed a dominant place in the ®eld of quantum
chemistry, and it started with the pioneering e�orts of
Jiri CÏ õÂ zÏ ek and Joe Paldus.
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